Managing a Housing Boom

Jason Allen Dan Greenwald

Discussion by

Anthony A. DeFusco Northwestern University and NBER

> ASSA Annual Meetings January 2022

Overview

- Setup
 - GE model with LTV/PTI limits that bind differently across mortgage market segments
- Questions
 - How do house prices respond to demand shocks?
 - How do changes in PTI/LTV limits in each segment affect house prices?

Key Results

- Fixed PTI limits less effective in moderating housing booms in two-segment model
- Tightening PTI limits decreases housing demand by less in two-segment model
- Effect of tightening LTV limits depends on which segment is targeted
- My Take
 - Great setup, a ton of interesting economics, well-suited for policy evaluation!
 - Do more to disentangle relative importance of different mechanisms
 - Provide more support for these mechanisms in the data

Focus of My Comments

- Setup
 - GE model with LTV/PTI limits that bind differently across mortgage market segments
- Questions
 - How do house prices respond to demand shocks?
 - How do changes in PTI/LTV limits in each segment affect house prices?

• Key Results

- Fixed PTI limits less effective in moderating housing booms in two-segment model
- Tightening PTI limits decreases housing demand by less in two-segment model
- Effect of tightening LTV limits depends on which segment is targeted

My Take

- Great setup, a ton of interesting economics, well-suited for policy evaluation!
- Do more to disentangle relative importance of different mechanisms
- Provide more support for these mechanisms in the data

One-segment model

- Income: y = \$50K
- Required consumption: $\overline{c} = \$25K \rightarrow assume yields$ no utility so also optimal
- Interest rate: $r = 0 \rightarrow$ will borrow as much as possible
- Borrowing limit: $m \le \min\{2y, h\}$

One-segment model

- Income: y = \$50K
- Required consumption: $\bar{c} =$ \$25K
- Interest rate: *r* = 0
- Borrowing limit: $m \le \min\{2y, h\}$
- Ideal house size: $h^* =$ \$125K
 - Mortgage: *m*^{*} = \$100K = 2y < *h*^{*}
 - Down payment: $d^* = $25K$
 - Consumption: $c^* = \overline{c} = y d^* =$ \$25K

One-segment model

- Income: y = \$50K
- Required consumption: $\overline{c} =$ \$25K
- Interest rate: *r* = 0
- Borrowing limit: $m \le \min\{2y, h\}$
- Ideal house size: $h^* =$ \$125K
 - Mortgage: *m*^{*} = \$100K = 2y < *h*^{*}
 - Down payment: $d^* = \$25K$
 - Consumption: $c^* = \overline{c} = y d^* =$ \$25K
- Why a \$125K house and not \$126K?
 - This would cost another \$1K out of pocket and I need that money to eat!

One-segment model

- Income: y = \$50K
- Required consumption: $\overline{c} =$ \$25K
- Interest rate: *r* = 0
- Borrowing limit: $m \le \min\{2y, h\}$
- Ideal house size: $h^* =$ \$125K

One-segment model, tighter PTI limit

• Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$

One-segment model

- Income: y = \$50K
- Required consumption: $\overline{c} =$ \$25K
- Interest rate: *r* = 0
- Borrowing limit: $m \le \min\{2y, h\}$
- Ideal house size: $h^* =$ \$125K

One-segment model, tighter PTI limit

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Dream house now costs me \$125K \$75K = \$50K and I can't eat!

One-segment model

- Income: y = \$50K
- Required consumption: $\bar{c} =$ \$25K
- Interest rate: *r* = 0
- Borrowing limit: $m \le \min\{2y, h\}$
- Ideal house size: $h^* =$ \$125K

One-segment model, tighter PTI limit

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Dream house now costs me \$125K \$75K = \$50K and I can't eat!
- So I dream smaller: $h^* =$ \$100K
 - Mortgage: *m*^{*} = \$75K = 1.5y < *h*^{*}
 - Down payment: $d^* = $25K$
 - Consumption: $c^* = \overline{c} = y d^* =$ \$25K

One-segment model

- Income: y = \$50K
- Required consumption: $\overline{c} =$ \$25K
- Interest rate: *r* = 0
- Borrowing limit: $m \le \min\{2y, h\}$
- Ideal house size: $h^* =$ \$125K

One-segment model, tighter PTI limit

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Dream house now costs me \$125K \$75K = \$50K and I can't eat!
- So I dream smaller: $h^* =$ \$100K
- Tightening PTI limit reduces housing demand

Segment 1: tight PTI, loose LTV

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ \$100K < \$125K dream house

Segment 1: tight PTI, loose LTV

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ 100K < 125K dream house

Segment 2: loose PTI, tight LTV

• Borrowing limit: $m \leq 0.9h$

Segment 1: tight PTI, loose LTV

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ 100K < 125K dream house

Segment 2: loose PTI, tight LTV

• Borrowing limit: $m \leq 0.9h$

Mechanism 1: Substitution

- If I switch segments, I can still afford my dream house!
 - House: *h*^{*} = \$125K
 - Mortgage: *m*^{*} = \$100K < 0.9*h*^{*}
 - Down payment: $d^* = \$25K$
 - Consumption: $c^* = \overline{c} = y d^* =$ \$25K

Segment 1: tight PTI, loose LTV

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ 100K < 125K dream house

Segment 2: loose PTI, tight LTV

• Borrowing limit: $m \leq 0.9h$

Mechanism 1: Substitution

• Tightening PTI limit does not reduce housing demand

Segment 1: tight PTI, loose LTV

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ 100K < 125K dream house

Segment 2: loose PTI, tight LTV

• Borrowing limit: $m \leq 0.9h$

Mechanism 1: Substitution

• Tightening PTI limit does not reduce housing demand

Mechanism 2: Constraint switching

- If I switch segments, I can dream even bigger!
 - House: *h*^{*} = \$250K
 - Mortgage: *m*^{*} = \$225K = 0.9*h*^{*}
 - Down payment: $d^* = \$25K$
 - Consumption: $c^* = \overline{c} = y d^* =$ \$25K

Segment 1: tight PTI, loose LTV

- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ 100K < 125K dream house

Segment 2: loose PTI, tight LTV

• Borrowing limit: $m \leq 0.9h$

Mechanism 1: Substitution

• Tightening PTI limit does not reduce housing demand

Mechanism 2: Constraint switching

• Tightening PTI limit increases housing demand

Segment 1: tight PTI, loose LTV

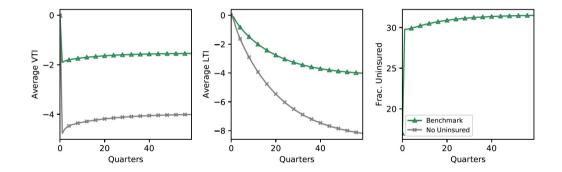
- Borrowing limit: $m \le \min\{1.5y, h\} = \min\{\$75K, h\}$
- Chosen house size: $h^* =$ 100K < 125K dream house

Segment 2: loose PTI, tight LTV

• Borrowing limit: $m \leq 0.9h$

Mechanism 1: Substitution

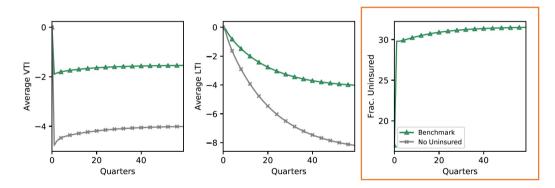
• Tightening PTI limit does not reduce housing demand


Mechanism 2: Constraint switching

• Tightening PTI limit increases housing demand

What is the relative importance of these two mechanisms?

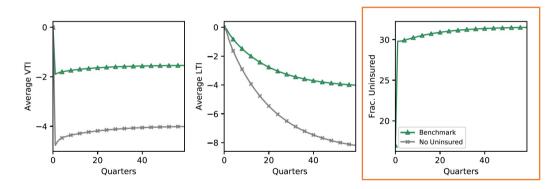
Key Result From the Paper


Tightening the PTI limit in a two-segment model reduces house prices and credit volume by less than it does in a one-segment model

Key Result From the Paper

Tightening the PTI limit in a two-segment model

reduces house prices and credit volume by less than it does in a one-segment model



How much of this is pure substitution-vs-increase in demand cond. on substituting?

Key Result From the Paper

Tightening the PTI limit in a two-segment model

reduces house prices and credit volume by less than it does in a one-segment model

Can you provide empirical evidence for either mechanism in the data using the policy experiment you replicate in the model?

Focus of My Comments

- Setup
 - GE model with LTV/PTI limits that bind differently across mortgage market segments
- Questions
 - How do house prices respond to demand shocks?
 - How do changes in PTI/LTV limits in each segment affect house prices?

• Key Results

- Fixed PTI limits less effective in moderating housing booms in two-segment model
- Tightening PTI limits decreases housing demand by less in two-segment model
- Effect of tightening LTV limits depends on which segment is targeted

My Take

- Great setup, a ton of interesting economics, well-suited for policy evaluation!
- Do more to disentangle relative importance of different mechanisms
- Provide more support for these mechanisms in the data

Overview

- Setup
 - GE model with LTV/PTI limits that bind differently across mortgage market segments
- Questions
 - How do house prices respond to demand shocks?
 - How do changes in PTI/LTV limits in each segment affect house prices?

Key Results

- Fixed PTI limits less effective in moderating housing booms in two-segment model
- Tightening PTI limits decreases housing demand by less in two-segment model
- Effect of tightening LTV limits depends on which segment is targeted
- My Take
 - Great setup, a ton of interesting economics, well-suited for policy evaluation!
 - Do more to disentangle relative importance of different mechanisms
 - Provide more support for these mechanisms in the data